diff_months: 5

MATLAB Report ERC015

Flat 50% Off Order New Solution
Added on: 2025-04-26 06:49:59
Order Code: LD527543
Question Task Id: 0

MATLAB Report - Coursework


Student Name:


Student ID:


Course Code: ERC015


Module Leader:


Due Date:


Table of Contents


Table of Contents. 2


MATLAB Report (1) 3


MATLAB Report (2) 4


Matlab Function. 4


Command Window.. 6


MATLAB Report (1)


Problem 3: Braking Performance


% Problem 3: Braking Performance


% This script calculates stopping distances of a race car under braking.


% The stopping distance is given by the equation: d = v^2 / (2a)



clear; clc; close all;



% 1. Define variables


% Initial speeds from 50 to 300 km/h in steps of 10 km/h


speeds_kmph =50:10:300;


speeds_mps =speeds_kmph * (1000/3600); % Conversion to m/s



?celeration values in m/s?2;


decelerations = [4,6,8,10]; % Different braking decelerations



% 2. Compute v?2; for all speed values


v_squared = speeds_mps.^2;



% 3. Calculate stopping distances for all combinationsa


% Initialize matrix: rows=speeds, columns=decelerations


stopping_distances = zeros(length(speeds_mps), length(decelerations));


for i = 1:length(decelerations)


a =decelerations(i);


stopping_distances(:, i) = v_squared ./ (2*a);


end



% 4. Extract stopping distances for specific speeds at a = 6 and 10 m/s?2;


target_speeds = [80,160,240]; % km/h


target_indices = find(ismember(speeds_kmph, target_speeds));


a6_index = find(decelerations==6);


a10_index = find(decelerations==10);



% Extract the corresponding stopping distances


stopping_selected_6 = stopping_distances(target_indices, a6_index)


stopping_selected_10 = stopping_distances(target_indices, a10_index)



% 5. Modify stopping distance at 200 km/h with a = 8 m/s?2;


% Increase it by 8%


index_200 = find(speeds_kmph == 200);


a8_index = find(decelerations == 8);


stopping_distances(index_200, a8_index) = ...


stopping_distances(index_200, a8_index) * 1.08;



% 6. Save the data in a .mat file


save('braking_data.mat', 'speeds_kmph', 'speeds_mps', 'decelerations', ...


'stopping_distances', 'stopping_selected_6', 'stopping_selected_10');



% 7. Plot stopping distance vs speed for each deceleration


figure;


hold on;



% Create a different marker for each deceleration


markers = {'o','s','d','^'};



colors = lines(length(decelerations));


for i = 1:length(decelerations)


plot(speeds_kmph, stopping_distances(:, i), ...


'LineWidth', 1.5, ...


'Marker', markers{i}, ...


'Color', colors(i,:), ...


'DisplayName', sprintf('a = %d m/s?2;', decelerations(i)));


end


grid on;



?d labels and legend


xlabel('Speed (km/h)');


ylabel('Stopping Distance (m)');


title('Stopping Distance vs. Speed for Various Decelerations');


legend('Location', 'northwest');


hold off;


MATLAB Report (2)


Matlab Function


function beam_analysis(L, P, w, E, I, c, sigmaY)


?AM_ANALYSIS Performs structural analysis of a cantilever beam


% beam_analysis(L, P, w, E, I, c, sigmaY) analyzes a cantilever beam


% with:


% L = Length of beam (m)


% P = Concentrated load at free end (N)


% w = Uniformly distributed load (N/m)


% E = Young's modulus (N/m?2;)


% I = Second moment of area (m?)


% c = Distance from neutral axis (m)


% sigmaY = Yield strength (N/m?2;)



% 1. Initialize variables and create position vector


n_points = 1000; % Number of points for analysis


x = linspace(0, L, n_points)'; % Position vector along beam



% 2. Preallocate arrays for results


M_x = zeros(n_points, 1); ?nding moment


sigma_x = zeros(n_points, 1); ?nding stress


delta_x = zeros(n_points, 1); ?flection



% 3. Calculate beam response at each point


for i = 1:n_points


?nding moment calculation


M_x(i) = -P*(L - x(i)) - (w/2)*(L - x(i))^2;



?nding stress calculation


sigma_x(i) = -(M_x(i)*c)/I;



?flection calculation


delta_x(i) = (P/(6*E*I))*(x(i)^3 - 3*L*x(i)^2) ...


- (w/(24*E*I))*(x(i)^4 - 4*L*x(i)^3 + 6*L^2*x(i)^2);


end



% 4. Check for failure (stress exceeds yield strength)


failure_points = find(abs(sigma_x) > sigmaY);


if ~isempty(failure_points)


warning(['Beam failure detected at ', num2str(length(failure_points)), ...


' points! Stress exceeds yield strength.']);


end



% 5. Create plots


% Common plot settings


line_width = 1.5;



% Figure 1: Bending Moment Diagram


figure;


plot(x, M_x, 'b', 'LineWidth', line_width);


title('Bending Moment Distribution');


xlabel('Position along beam (m)');


ylabel('Bending Moment (Nm)');


grid on;




% Figure 2: Bending Stress Distribution


figure;


hold on;



% Plot safe region as thick red line


safe_region = abs(sigma_x) <= sigmaY;


plot(x(safe_region), sigma_x(safe_region), 'r-', 'LineWidth', 3, 'DisplayName', 'Safe Region');



% Plot unsafe region as thick black dotted line (appearing as connected dots)


unsafe_region = ~safe_region;


plot(x(unsafe_region), sigma_x(unsafe_region), 'k.', 'MarkerSize', 12, 'DisplayName', 'Unsafe Region');



hold off;



% Customize plot appearance


title('Bending Stress Distribution', 'FontSize', 12, 'FontWeight', 'bold');


xlabel('Position along beam (m)', 'FontSize', 10);


ylabel('Bending Stress (Pa)', 'FontSize', 10);



% Set both axes to start from 0


xlim([0 L]);


ylim([0 max(abs(sigma_x))*1.1]);



% Configure legend and grid


legend('Location', 'northeast', 'FontSize', 9);


grid on;


box on;



% Figure 3: Deflection Curve


figure;


plot(x, delta_x, 'g', 'LineWidth', line_width);


title('Deflection of the Beam');


xlabel('Position along beam (m)');


ylabel('Deflection (m)');


grid on;



% 6. Parameter suggestions if failure occurs


if ~isempty(failure_points)


fprintf('nSuggested parameter modifications to prevent failure:n');



?lculate required scaling factor to stay within yield


max_stress = max(abs(sigma_x));


scaling_factor = max_stress / sigmaY;



% Option 1: Reduce loads


fprintf(' - Reduce P by %.1f%% and w by %.1f%%n', ...


(scaling_factor-1)*100, (scaling_factor-1)*100);



% Option 2: Increase beam properties


fprintf(' - Increase I by %.1f%%n', (scaling_factor-1)*100);


fprintf(' - Or increase c by %.1f%%n', (1-1/scaling_factor)*100);



% Option 3: Use stronger material


fprintf(' - Use material with E > %.2f GPan', E*scaling_factor/1e9);


end


end


Command Window


L = 5; P = 10000; w = 2000; E = 200e9;


I = 0.00000833; c = 0.05; sigmaY = 250e6;


beam_analysis(L, P, w, E, I, c, sigmaY);

  • Uploaded By : Akshita
  • Posted on : April 26th, 2025
  • Downloads : 0
  • Views : 93

Order New Solution

Can't find what you're looking for?

Whatsapp Tap to ChatGet instant assistance

Choose a Plan

Premium

80 USD
  • All in Gold, plus:
  • 30-minute live one-to-one session with an expert
    • Understanding Marking Rubric
    • Understanding task requirements
    • Structuring & Formatting
    • Referencing & Citing
Most
Popular

Gold

30 50 USD
  • Get the Full Used Solution
    (Solution is already submitted and 100% plagiarised.
    Can only be used for reference purposes)
Save 33%

Silver

20 USD
  • Journals
  • Peer-Reviewed Articles
  • Books
  • Various other Data Sources – ProQuest, Informit, Scopus, Academic Search Complete, EBSCO, Exerpta Medica Database, and more