Sets : Relation And Function Assignment
3.1Question1
Letusconsiderthefollowingquestionwithdifferentsolutions.Choosethebestsolutionandexplainwhyyouchooseit.
Problem:Provethattheproductoftwooddnumbersisalsoanoddnumber.
- Anintegerisanoddnumberifitistwotimesanotherintegerplus1.Thereforethe product of two odd numbers is four times the product of two other integers plus twotimes the sum of the two other integers plus one. This shows that the product of two oddnumbersisodd
- m=2k+1,n=2l +1
mn=4kl+2(k+l)+1=2(2kl+k+l)+1.
- Supposenandmaretwooddnumbers,thenm= 2k+1andn=2l+1forsome
k,l?Z.Wehave
mn=(2k+1)(2l+1)
=4kl+2k+2l+1
=2(2kl+k+l)+1
=2q+1,
whereq=2kl +k+l.
Wecanseethatq=2kl+k+l Zask,l Z.Therefore,mn=2q+1isanoddnumber.Inotherwords,theproductoftwooddnumbersisalsoodd.
- Supposenandmaretwooddnumbers,thenm=2k+1andn=2l+1forsomeintegerskandl.Wehave
mn=(2k+1)(2l+1)=4kl+2k+2l+1=2(2kl+k+l)+1=2q+1, where q=2kl+k+l.
Wecanseethatqisanintegerask,l Z.Therefore,mn=2q+1isanoddnumber.Inotherwords,theproductoftwooddnumbersisalsoodd.
3.2Question2
Considerthefollowingproblemanditssolution.
- Problem:CalculateA100where
A= 0 1 .
?1 ?1
- Solution:Byastraightforwardcalculation,weobtain
A100 = 0 1 .
?1 ?1
ThissolutiondoesnotexplainhowwecalculateA100.Therefore,thissolutionwillbemarkedasinsufficientexplanation.
Canyouprovideanexplanationtothissolutiontomakeitcomplete?
3.3Question3
Beforeusingatheoremorlemma,makesureyou(carefully)checkandstateifallconditionsofthetheoremorlemmaareactuallysatisfied.
Letf(x)=tanx.Inthefollowingstatements,choosethecorrectstatement.Brieflyexplainyouranswer.
- Sincef(0)=f(?)=0,byRollestheoremthereexistsc?(0,?)suchthatf?(c)=
- Calculatingthederivativeoff,wehave
f?(x)= 1cos2(x)
=1+tan2x.
Wenotethatovertheinterval[0,?],fisnotdefinedatx=?/2. As1 +tan2x>0forall
x?[0,?]andx/=?/2,theredoesnotexistc?(0,?)suchthatf?(c)=0.
- Both(i)and(ii)are
- Both(i)and(ii)are
3.4Question4
Considerthefollowingstatementandexplanation.Canyouconcludethatthestatementistrue?
- Statement:Ifpisprimethen2p?1isalso
- Explanation:Thestatementholdsforp=2,3,5, Therefore,thestatementistrue,i.e.,ifpisprimethen2p?1isalsoprime.
3.5Question5
Considerthefollowingproblemandsolution.Isthesolutiongivenbelowcorrect?Ifnot,canyougiveacorrectsolutionfortheproblem?
- Problem:ShowthatifAisasquarematrix,thenA+ATis
- Solution:ForthecasewhereAisa11matrix,letA=[a]. Wehave
A+AT=[a]+[a]=[2a],
whichissymmetric.
ForthecasewhereAisa22matrix,let
A= a b.
c d
Wehave
A+AT = a b+ a c= 2a b+c,
whichissymmetric.
c d b d
b+c 2d
Therefore,ifAisasquarematrix,thenA+ATsymmetric.
3.6Question6
Considerthefollowingproblemandchooseallthevalidsolutionsfromtheoptionsgivenbelow.
- Problem:Provethatifab=acanda/=0thenb=cfora,b,c?R.